109 research outputs found

    Testing for w<-1 in the Solar System

    Full text link
    In scalar-tensor theories of gravity, the equation of state of dark energy, w, can become smaller than -1 without violating any energy condition. The value of w today is tied to the level of deviations from general relativity which, in turn, is constrained by solar system and pulsars timing experiments. The conditions on these local constraints for w to be significantly less than -1 are established. It is demonstrated that this requires to consider theories that differ from the Jordan-Fierz-Brans-Dicke theory and that involve either a steep coupling function or a steep potential. It is also shown how a robust measurement of w could probe scalar-tensor theories.Comment: 4 pages, 1 figur

    CFHTLS weak-lensing constraints on the neutrino masses

    Full text link
    We use measurements of cosmic shear from CFHTLS, combined with WMAP-5 cosmic microwave background anisotropy data, baryonic acoustic oscillations from SDSS and 2dFGRS and supernovae data from SNLS and Gold-set, to constrain the neutrino mass. We obtain a 95% confidence level upper limit of 0.54 eV for the sum of the neutrino masses, and a lower limit of 0.03 eV. The preference for massive neutrinos vanishes when shear-measurement systematics are included in the analysis.Comment: 10 pages. Published versio

    Weak lensing in scalar-tensor theories of gravity

    Get PDF
    This article investigates the signatures of various models of dark energy on weak gravitational lensing, including the complementarity of the linear and non-linear regimes. It investigates quintessence models and their extension to scalar-tensor gravity. The various effects induced by this simplest extension of general relativity are discussed. It is shown that, given the constraints in the Solar System, models such as a quadratic nonminimal coupling do not leave any signatures that can be detected while other models, such as a runaway dilaton, which include attraction toward general relativity can let an imprint of about 10%.Comment: 25 pages, 29 figure

    Scalar-field quintessence by cosmic shear: CFHT data analysis and forecasts for DUNE

    Get PDF
    A light scalar field, minimally or not-minimally coupled to the metric field, is a well-defined candidate for the dark energy, overcoming the coincidence problem intrinsic to the cosmological constant and avoiding the difficulties of parameterizations. We present a general description of the weak gravitational lensing valid for every metric theory of gravity, including vector and tensor perturbations for a non-flat spatial metric. Based on this description, we investigate two minimally-coupled scalar field quintessence models using VIRMOS-Descart and CFHTLS cosmic shear data, and forecast the constraints for the proposed space-borne wide-field imager DUNE.Comment: 7 pages, 4 figures. To appear in proceedings of IRGAC06 (Barcelona, July 06

    Cosmological Constraints from Strong Gravitational Lensing in Galaxy Clusters

    Full text link
    Current efforts in observational cosmology are focused on characterizing the mass-energy content of the Universe. We present results from a geometric test based on strong lensing in galaxy clusters. Based on Hubble Space Telescope images and extensive ground-based spectroscopic follow-up of the massive galaxy cluster Abell 1689, we used a parametric model to simultaneously constrain the cluster mass distribution and dark energy equation of state. Combining our cosmological constraints with those from X-ray clusters and the Wilkinson Microwave Anisotropy Probe 5-year data gives {\Omega}m = 0.25 +/- 0.05 and wx = -0.97 +/- 0.07 which are consistent with results from other methods. Inclusion of our method with all other techniques available brings down the current 2{\sigma} contours on the dark energy equation of state parameter wx by about 30%.Comment: 32 pages, 8 figures, includes Supplementary Online Material. Published by Science on August 20, 201

    Constraining scalar-tensor quintessence by cosmic clocks

    Get PDF
    Scalar-tensor quintessence models can be constrained by identifying suitable cosmic clocks which allow to select confidence regions for cosmological parameters. In particular, we constrain the characterizing parameters of non-minimally coupled scalar-tensor cosmological models which admit exact solutions of the Einstein field equations. Lookback time to galaxy clusters at low intermediate, and high redshifts is considered. The high redshift time-scale problem is also discussed in order to select other cosmic clocks such as quasars.Comment: 13 pages, 8 figures. to be published in Astron & Astrop

    Measuring the dark side (with weak lensing)

    Full text link
    We introduce a convenient parametrization of dark energy models that is general enough to include several modified gravity models and generalized forms of dark energy. In particular we take into account the linear perturbation growth factor, the anisotropic stress and the modified Poisson equation. We discuss the sensitivity of large scale weak lensing surveys like the proposed DUNE satellite to these parameters. We find that a large-scale weak-lensing tomographic survey is able to easily distinguish the Dvali-Gabadadze-Porrati model from LCDM and to determine the perturbation growth index to an absolute error of 0.02-0.03.Comment: 19 pages, 11 figure

    The VIMOS Public Extragalactic Redshift Survey - Searching for Cosmic Voids

    Get PDF
    The characterisation of cosmic voids gives unique information about the large-scale distribution of galaxies, their evolution and the cosmological model. We identify and characterise cosmic voids in the VIMOS Public Extragalactic Redshift Survey (VIPERS) at redshift 0.55 < z < 0.9. A new void search method is developed based upon the identification of empty spheres that fit between galaxies. The method can be used to characterise the cosmic voids despite the presence of complex survey boundaries and internal gaps. We investigate the impact of systematic observational effects and validate the method against mock catalogues. We measure the void size distribution and the void-galaxy correlation function. We construct a catalogue of voids in VIPERS. The distribution of voids is found to agree well with the distribution of voids found in mock catalogues. The void-galaxy correlation function shows indications of outflow velocity from the voids

    Examination of the astrophysical S-factors of the radiative proton capture on 2H, 6Li, 7Li, 12C and 13C

    Full text link
    Astrophysical S-factors of radiative capture reactions on light nuclei have been calculated in a two-cluster potential model, taking into account the separation of orbital states by the use of Young schemes. The local two-body potentials describing the interaction of the clusters were determined by fitting scattering data and properties of bound states. The many-body character of the problem is approximatively accounted for by Pauli forbidden states. An important feature of the approach is the consideration of the dependence of the interaction potential between the clusters on the orbital Young schemes, which determine the permutation symmetry of the nucleon system. Proton capture on 2H, 6Li, 7Li, 12C, and 13C was analyzed in this approach. Experimental data at low energies were described reasonably well when the phase shifts for cluster-cluster scattering, extracted from precise data, were used. This shows that decreasing the experimental error on differential elastic scattering cross sections of light nuclei at astrophysical energies is very important also to allow a more accurate phase shift analysis. A future increase in precision will allow more definite conclusions regarding the reaction mechanisms and astrophysical conditions of thermonuclear reactions.Comment: 40p., 9 fig., 83 ref. arXiv admin note: substantial text overlap with arXiv:1005.1794, arXiv:1112.1760, arXiv:1005.198

    DUNE: The Dark Universe Explorer

    Get PDF
    Understanding the nature of Dark Matter and Dark Energy is one of the most pressing issues in cosmology and fundamental physics. The purpose of the DUNE (Dark UNiverse Explorer) mission is to study these two cosmological components with high precision, using a space-based weak lensing survey as its primary science driver. Weak lensing provides a measure of the distribution of dark matter in the universe and of the impact of dark energy on the growth of structures. DUNE will also include a complementary supernovae survey to measure the expansion history of the universe, thus giving independent additional constraints on dark energy. The baseline concept consists of a 1.2m telescope with a 0.5 square degree optical CCD camera. It is designed to be fast with reduced risks and costs, and to take advantage of the synergy between ground-based and space observations. Stringent requirements for weak lensing systematics were shown to be achievable with the baseline concept. This will allow DUNE to place strong constraints on cosmological parameters, including the equation of state parameter of the dark energy and its evolution from redshift 0 to 1. DUNE is the subject of an ongoing study led by the French Space Agency (CNES), and is being proposed for ESA's Cosmic Vision programme
    • …
    corecore